[1] 侯文华,宋关玲,汪群慧. 浮萍在水体污染治理中的应用[J]. 环境科学研究, 2004,S1:70–73. Hou W H, Song G L, Wang Q H.Application of duckweed in water pollution control[J]. Environmental Science Research, 2004,S1:70–73. [2] 王淑芳. 水体富营养化及其防治[J]. 环境科学与管理, 2005, 06:63–65. Wang S F.Eutrophication of water body and its prevention and control[J]. Environmental Science and Management, 2005,06:63–65. [3] 王仁全. 滨江湿地不同造林绿化模式生态修复技术比较[J]. 南方农业, 2019,13(03):54–56. Wang R Q.Comparison of ecological rehabilitation technologies of different afforestation models in riverside wetlands[J]. Southern Agriculture, 2019,13(03): 54–56. [4] 张饮江, 张乐婷, 张曼曼. 浮萍暴发控制技术与机理的研究与展望[J]. 广东农业科学, 2014,41(1): 155–160. Zhang Y J, Zhang L T, Zhang M M.Research and prospects on duckweed outbreak control technology and mechanism[J]. Guangdong Agricultural Sciences, 2014, 41(1): 155–160. [5] 黄辉, 刘杰, 赵浩, 等. 浮萍放养体系对污水氮磷的净化效果[J]. 农业环境科学学报, 2007(S1): 242–245. Huang H, Liu J, Zhao H, et al. Purification effect of duckweed stocking system on sewage nitrogen and phosphorus[J]. Journal of Agro-Environmental Sciences, 2007(S1): 242–245. [6] 陈静, 和丽萍, 赵祥华, 等. 滇池草海东风坝水域生态修复技术工程应用[J]. 四川环境, 2007(03): 34–40. Chen J, He L P, Zhao X H, et al. Engineering application of ecological restoration technology in Caohai Dongfeng dam waters of Dianchi Lake[J]. Sichuan Environment, 2007, (03): 34–40. [7] 梁威, 吴振斌, 詹发萃, 等. 人工湿地植物根区微生物与净化效果的季节变化[J]. 湖泊科学, 2004, 04: 312–317. Liang W, Wu Z B, Zhan F C, et al. Seasonal variations of microorganism and purification effect in plant root zone of constructed wetland[J]. Lake Science, 2004, 04: 312–317. [8] 唐艳葵, 韦星任, 蓝梓铭. 浮萍在Cd、Zn污染水体植物修复中的应用潜力研究[J]. 安徽农业科学, 2010, 38(27): 15163–15165. Tang Y K, Wei X R, Lan Z M.Application potential of duckweed in phytoremediation of Cd and Zn polluted water bodies[J]. journal of Anhui Agricultural Sciences, 2010, 38(27): 15163–15165. [9] 吴燕, 柯文山, 陈建军. 浮萍对水体Zn的吸收富集能力及SOD抗氧化酶活性反应[J]. 湖北大学学报, 2009, 31(3): 319–321. Wu Y, Ke W S, Chen J J.The absorption and enrichment of Zn by duckweed and the activity of SOD antioxidant enzyme[J]. Journal of Hubei University, 2009, 31(3): 319–321. [10] 韩玉洁, 杨琳, 赵玲, 等. 浮萍植物在水体净化中的研究及展望[J]. 生物学通报, 2016(6): 4–7. Han Y J, Yang L, Zhao L, et al. Research and prospects of duckweed plants in water purification[J]. Bulletin of Biology, 2016(6): 4–7. [11] 刘璐嘉, 陈汉新, 周明耀. 江苏地区富营养化水体浮萍修复技术应用研究[J]. 江苏农业科学, 2014, 42(5): 320–323. Liu L J, Chen H X, Zhou M Y.Application of duckweed restoration technology in eutrophic water bodies in Jiangsu area[J]. Jiangsu Agricultural Sciences, 2014, 42(5): 320–323. [12] 刘俊, 张晓燕, 金根娣. 浮萍、满江红、凤眼莲对水体中铅离子的吸收研究[J]. 扬州职业大学学报, 2009, 13(4): 33–35. Liu J, Zhang X Y, Jin G D.Study on the absorption of lead ion in water by duckweed, Manjianghong and Eichhornia crassipes[J]. Journal of Yangzhou Vocational University, 2009,13(4): 33–35. [13] 彭赘, 严彬. 浮萍对重金属离子的吸附作用研究[J]. 生物学教学, 2010,35(10): 68–70. Peng Z, Yan B.Study on the adsorption of heavy metal ions by duckweed[J]. Biology Teaching, 2010,35(10): 68–70. [14] 周雄飞, 史巍, 柏彦超. 浮萍混养体系对污染水体氮磷的去除效果[J]. 江苏农业科学, 2011(3): 541–542. Zhou X F, Shi W, Bai Y C.Removal effect of duckweed polyculture system on nitrogen and phosphorus in polluted waters[J]. Jiangsu Agricultural Sciences, 2011(3): 541–542. [15] Greuter D, Loy A, Horn M.Probe base — an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016[J]. Nucleic Acids Research, 2015. [16] Rabus R, Fukui M, Wilkes H, et al. Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil[J]. Applied & Environmental Microbiology, 1996,62(10): 3605–3613. [17] 魏佳明. 表流湿地细菌及反硝化细菌群落结构研究[D].中国林业科学研究院, 2017. Wei J M.Study on the community structure of bacteria and denitrifying bacteria in surface wetland [D]. Chinese Academy of Forestry, 2017. [18] 张成龙,李冰,侯诒然,等.复合垂直潜流人工湿地中硝化和反硝化细菌的筛选及其特性分析[J].南方农业学报, 2019,50(04): 736–744. Zhang C L, Li B, Hou Y, et al. Screening and characteristics analysis of nitrifying and denitrifying bacteria in composite vertical subsurface flow constructed wetland[J]. Journal of Southern Agricultural Sciences, 2019,50(04): 736–744. [19] Amann R I, Binder B J, Olson R J.Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations[J]. Applied & Environmental Microbiology, 1990, 56(6):1919–1925. [20] Meier H, Amann R, Ludwig W, et al. Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G + C content[J]. Systematic & Applied Microbiology, 1999, 22(2):186–196. [21] Roller C, Wagner M, Amann R, ,et al. In situ probing of gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides [J]. Microbiology. In situ probing of gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides [J]. Microbiology, 1995,140(10)(Part 5):1267–1267. [22] Crocetti G R, Hugenholtz P, Bond P L, et al. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation[J]. Applied & Environmental Microbiology, 2000,66(3): 1175–1182. [23] Crocetti G, Murto M, Björnsson L.An update and optimisation of oligonucleotide probes targeting methanogenic Archaea, for use in fluorescence in situ hybridisation (FISH)[J]. Journal of Microbiological Methods, 2006,65(1):194–201. [24] Raskin L, Stromley J M, Rittmann B E, et al. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens[J]. Applied & Environmental Microbiology, 1994,60(4):1232–1240. [25] Gich F, Garciagil J, Overmann J.Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes[J]. Archives of Microbiology, 2001,177(1):1–10. [26] Björnsson L, Hugenholtz P, Tyson G W, et al. Filamentous chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal[J]. Microbiol, 2002,148(8):2309–2318. [27] Manz W, Amann R, Ludwig W, et al. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment[J]. Microbiology, 1996,142(3): 1097–1106. [28] 杜靖宇,来庆云,张仲宇,等. 潜流人工湿地中COD与BOD的去除研究[J]. 环境保护与循环经济, 2016,36(05): 44–47. Du J Y, Lai Q Y, Zhang Z Y, et al. Removal of COD and BOD in subsurface flow constructed wetland[J]. Environmental Protection and Circular Economy, 2016,36(05): 44–47. [29] 刘群,李萍.四类地表水水体COD和BOD_5相关性分析[J].科技经济导刊,2020,28(23):71+73. Liu Q, Li P. Correlation analysis of COD and BOD_5 of four types of surface water bodies [J]. Journal of Science & Technology Economics,2020,28(23): 71+73. [30] 包立,张乃明,农明英.滇池东大河流域土壤磷素累积规律及空间分布特征研究[J].土壤,2014,46(03):470–474. Bao L, Zhang N M, Nong M Y.Study on the accumulation law and spatial distribution characteristics of soil phosphorus in the East Dahe Basin of Dianchi Lake[J]. Soil, 2014,46(03): 470–474. [31] 杨婧葳, 谢曼平. 昆明市捞鱼河水质变化及影响因素综述[J].现代农业研究, 2020,26(10): 101–107. Yang J W, Xie M P.Summary of water quality changes and influencing factors of Laoyu River in Kunming City[J]. Modern Agricultural Research, 2020,26(10): 101–107. [32] 周雄飞. 浮萍对富营养化水体中N、P净化能力初探[D]. 扬州大学, 2011. Zhou X F.A preliminary study on duckweed's ability to purify N and P in eutrophic water [D]. Yangzhou University, 2011. |