[1] Hosenuzzaman M, Rahim N, Selvaraj J, et al. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 284-297. [2] Chander S, Purohit A, Nehra A, et al. A study on spectral response and external quantum efficiency of mono-crystalline silicon solar cell[J]. International Journal of Renewable Energy Research, 2015, 5(1): 41-44. [3] Santhakumari M, Sagar N.A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 83-100. [4] Ansari E, Akhtar M N, Othman W A F W, et al. Numerical Investigation of Thermal Efficiency of a Solar Cell[J]. Applied Sciences, 2022, 12(21): 10887 [5] Rouholamini A, Pourgharibshahi H, Fadaeinedjad R, et al. Temperature of a photovoltaic module under the influence of different environmental conditions experimental investigation[J]. International Journal of Ambient Energy, 2016, 37(3): 266-272. [6] Shalaby S M, Elfakharany M K, Moharram B M, et al. Experimental study on the performance of PV with water cooling[J]. Energy Reports, 2022, 8(S1): 957-961. [7] Soliman A S, Cheng P.A new heat sink for cooling photovoltaic systems using fins filled with multiple PCMs[J]. Journal of Energy Storage, 2025, 114: 115875. [8] Ahmed A, Fouda A, Elattar H F, et al. Advancing photovoltaic thermal module efficiency through optimized heat sink designs[J]. Applied Thermal Engineering, 2025, 271: 126241. [9] Moein-Jahromi M, Rahmanian-Koushkaki H, Rahmanian S, et al. Evaluation of nanostructured GNP and CuO compositions in PCM-based heat sinks for photovoltaic systems[J]. Journal of Energy Storage, 2022, 53:105240. [10] Rajvikram M, Leoponraj S, Ramkumar S, et al. Experimental investigation on the abasement of operating temperature in solar photovoltaic panel using PCM and aluminium[J]. Solar Energy, 2019, 188: 327-338. [11] Dintcheva N T, Morici E, Colletti C.Encapsulant Materials and Their Adoption in Photovoltaic Modules: A Brief Review[J]. Sustainability, 2023, 15(12): 9453. [12] 别红玲. 光伏组件封装材料研究[J]. 光源与照明, 2024(7): 35-37. [13] Oh J, Rammohan B, Pavgi A, et al. Reduction of PV module temperature using thermally conductive backsheets[J]. IEEE Journal of Photovoltaics, 2018, 8(5): 1160-1167. [14] Pavgi A, Oh J, TamizhMani G S. Thermally conductive backsheets (TCB) of PV modules: Positive impacts on performance, lifetime and LCOE[J]. Energies, 2021, 14(5): 1252. [15] Kim T, Lee D, Ko Y, et al. Thermal analysis and design optimization of photovoltaic module for improved heat dissipation from photovoltaic module[J]. IEEE Journal of Photovoltaics, 2022, 12(5): 1198-1204. [16] Kim N, Kim D, Kang H, et al. Improved heat dissipation in a crystalline silicon PV module for better performance by using a highly thermal conducting backsheet[J]. Energy, 2016, 113: 515-520. [17] Huang X, Lin Y, Fang G.Thermal properties of polyvinyl butyral/graphene composites as encapsulation materials for solar cells[J]. Solar Energy, 2018, 161: 187-193. [18] Kim K, Yoo M, Ahn K, et al. Thermal and mechanical properties of AlN/BN-filled PVDF composite for solar cell backsheet application[J]. Ceramics International, 2015, 41(1): 179-187. [19] Palmiotti E C, Roberts C C, King B H.Thermal behaviors of ethylene vinyl acetate encapsulants in fielded silicon photovoltaic modules[J]. Journal of Applied Polymer Science, 2023, 140(35): e54337. [20] de Oliveira M C C, Diniz A S A C, Viana M M,#magtechI#et al. The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2299-2317. [21] Du Y, Tao W, Liu Y, et al. Heat transfer modeling and temperature experiments of crystalline silicon photovoltaic modules[J]. Solar Energy, 2017, 146: 257-263. |