楚雄师范学院学报 ›› 2025, Vol. 40 ›› Issue (3): 13-19.

• 新能源 • 上一篇    下一篇

复合导热封装材料对太阳能电池组件性能优化的研究

李文涛1, 何永泰2,*, 祝星1   

  1. 1.昆明理工大学 冶金与能源工程学院,云南 昆明 650093;
    2.楚雄师范学院 物理与电气能源工程学院,云南 楚雄 675000
  • 收稿日期:2025-01-05 出版日期:2025-05-20 发布日期:2025-07-01
  • 通讯作者: *何永泰(1970–),男,博士,教授,研究方向为太阳能光伏发电系统。
  • 作者简介:李文涛(2002–),男,硕士研究生,研究方向为太阳能光伏发电。
  • 基金资助:
    云南省地方高校联合专项重点项目(No. 202101BA070001-039)

Research on Performance Optimization of the Solar Cell Module Using Composite Thermal Conductive Encapsulation Materials

LI Wentao1, HE Yongtai2,*, ZHU Xing1   

  1. 1. School of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650093;
    2. School of Physics, Electrical and Energy Engineering, Chuxiong Normal University, Chuxiong, Yunnan Province 675000
  • Received:2025-01-05 Online:2025-05-20 Published:2025-07-01

摘要: 针对光伏组件热致功率衰减这一关键问题,本研究制备了氮化铝/乙烯-醋酸乙烯共聚物/氧化铝/聚偏氟乙烯(AlN/EVA/Al2O3/PVDF)多层复合导热封装材料。通过将复合材料应用于硅电池背层,成功制备出具有高效散热特性的太阳能电池组件,并系统研究了导热材料对组件热特性及电学性能的影响。实验结果表明,随着复合封装材料导热性能的提升,太阳能电池组件呈现出显著的温度调控效应:当材料导热系数达到0.8794 W/(m·K)时,组件正面工作温度降低2.18℃,同时背面温度相应升高2.31℃,证实了该材料优异的散热能力。电性能测试表明,采用该导热封装材料的组件表现出显著的电性能改善:短路电流(ISC)增长率降低9.5%,开路电压(VOC)衰减率降低18.8%,最大功率(Pmax)和转换效率(Etac)衰减率降低22.9%,填充因子(FF)衰减率降低27.4%。本研究证实通过优化封装材料导热性能并改善组件散热路径,可有效调控太阳能电池组件的工作温度,从而显著提升其输出特性。本研究不仅为开发高性能光伏封装材料提供了新的技术路线,也对提高光伏系统整体性能具有重要的应用价值。

关键词: 复合导热封装材料, 太阳能电池组件, 导热系数, 温度特性, 电气特性

Abstract: To address the critical issue of thermal-induced power degradation in photovoltaic (PV) modules, this study developed a multilayer thermally conductive encapsulation material composed of aluminum nitride/ethylene-vinyl acetate copolymer/aluminum oxide/polyvinylidene fluoride (AlN/EVA/Al2O3/PVDF). The composite material was applied to the back layer of silicon solar cells to fabricate PV modules with enhanced heat dissipation properties. A systematic investigation was conducted to evaluate the influence of the thermally conductive material on the thermal and electrical performance of the modules. Experimental results demonstrated that the composite encapsulation material significantly improved thermal regulation in the solar modules. At a thermal conductivity of 0.8794 W/(m·K), the front-side operating temperature of the module decreased by 2.18°C, while the back-side temperature increased by 2.31°C, confirming the material's superior heat dissipation capability. Electrical performance analysis revealed notable enhancements in the modules employing this encapsulation material: the growth rate of short-circuit current (ISC) decreased by 9.5%, the degradation rate of open-circuit voltage (VOC) by 18.8%, the maximum power (Pmax) and conversion efficiency (Etac) degradation rates by 22.9%, and the fill factor (FF) degradation rate by 27.4%. This study demonstrates that optimizing the thermal conductivity of encapsulation materials and improving heat dissipation pathways can effectively regulate the operating temperature of PV modules, thereby significantly enhancing their output performance. The findings provide a novel technical strategy for developing high-performance PV encapsulation materials, offering substantial application value for improving the overall efficiency and reliability of photovoltaic systems.

Key words: composite thermal conductive encapsulation material, solar cell module, thermal conductivity, temperature characteristic, electrical characteristic

中图分类号: