楚雄师范学院学报 ›› 2020, Vol. 35 ›› Issue (3): 20-25.

• 数学 • 上一篇    下一篇

多算法优化融合控制球磨机制粉系统的研究

穆海芳1,2, 韩君1,2, 李明1   

  1. 1.宿州学院 机械与电子工程学院,安徽 宿州,234000;
    2.宿州学院 煤矿电子工程技术中心,安徽 宿州,234000
  • 收稿日期:2019-11-22 出版日期:2020-05-20 发布日期:2020-12-28
  • 作者简介:穆海芳(1984-),男,硕士,宿州学院机械与电子工程学院讲师,研究方向为机电-体化技术。E-mail:181572460@qq.com,Tel:18949943862
  • 基金资助:
    安徽省科技重大专项(NO:18030901023)

Research on Multi-method Optimization and Fusion Control of Ball Mill Pulverizing System

MU Haifang1,2, HAN Jun1,2, LI Ming1   

  1. 1. School of Mechanical and Electronic Engineering,Suzhou University,Suzhou,Anhui Province 234000;
    2. Coal Mine Electrical Engineering Eechnology Research Center,Suzhou University,Suzhou,Anhui Province 234000
  • Received:2019-11-22 Online:2020-05-20 Published:2020-12-28

摘要: 球磨机制粉系统具有的非线性、强耦合、时变性特点,使得实现其优良控制成为一个复杂的问题。在基于现有的控制方法基础上,提出多种算法混合优化的思想用于其生产过程的控制。首先建立控制器的结构,其次优化神经网络结构、优化反向传播算法、优化粒子群算法,完成PID算法的参数自适应调整,最后再对系统进行控制。通过对某球磨机系统的仿真实验表明,该方法较一般的控制方法具有超调小、跟踪快、鲁棒性强等特点,具有更好的控制品质。

关键词: 球磨机, 模糊, 神经网络, 粒子群

Abstract: The pulverizing system of ball mill is nonlinear,strong coupling and time-varying,making it a complex problem to realize its good control.Based on the existing control methods,the idea of multi-method hybrid optimization is put forward for its production process control.Firstly,the structure of the controller is established;secondly,the structure of the neural network,the back-propagation algorithm and the particle swarm optimization is optimized to complete the PID algorithm parameters adaptive adjustment;and finally,the system is controlled.The simulation results of a ball mill system show that,compared with general control methods,this method has better control quality because it has the characteristics of small overshoot,fast tracking and strong robustness.

Key words: ball mill, fuzzy, neural network, particle swarm optimization

中图分类号: