楚雄师范学院学报 ›› 2020, Vol. 35 ›› Issue (3): 106-114.

• 计算机 • 上一篇    下一篇

一种通过卷积─池化提升SVM人脸识别率的研究

叶晓波1, 秦海菲2, 吕永林3   

  1. 1.楚雄师范学院 网络与信息系统研究所,云南 楚雄 675000;
    2.楚雄师范学院 信息科学与技术学院,云南 楚雄 675000;
    3.楚雄师范学院经济与管理学院,云南 楚雄 675000
  • 收稿日期:2019-12-17 出版日期:2020-05-20 发布日期:2020-12-28
  • 作者简介:叶晓波(1975-),男,硕士,楚雄师范学院网络与信息系统研究所副教授,研究方向为模式识别、现代教育技术。E-mail:yncxyxb@hotmail.com

Research on Improving SVM Face Recognition Rate by Convolution - Pooling

YE Xiaobo1, QIN Haifei2, LV Yonglin3   

  1. 1. Institute of Network & Information Systems,Chuxiong Normal University,Chuxiong,Yunnan Province 675000;
    2. School of Information Sciences & Technology,Chuxiong Normal University,Chuxiong,Yunnan Province 675000;
    3. School of Economics & Management,Chuxiong Normal University,Chuxiong,Yunnan Province 675000
  • Received:2019-12-17 Online:2020-05-20 Published:2020-12-28

摘要: 以剑桥大学计算机实验室的ORL Faces数据库作为实验数据,通过卷积神经网络中的“卷积-池化”层对实验数据进行处理,选择LIBSVM集成软件为工具,对原始数据和经“卷积-池化”处理后的数据进行了分类识别研究,SVM参数选用C-SVC模型、nu-SVC模型与线性核函数、多项式核函数、径向基核函数、Sigmoid核函数进行组合。实验结论:增加训练数据可提高人脸识别率,卷积-池化处理可实现数据降维,“高斯平滑卷积核卷积-池化”处理可提高SVM人脸识别率,SVM在人脸识别中更适合选用C-SVC模型+线性核函数。

关键词: 人脸识别, 卷积, 池化, SVM(支持向量机)

Abstract: Taking the ORL Faces database of the computer laboratory of Cambridge University as the experimental data,the experimental data are processed through the "convolution-pooling" layer in the convolution neural network,and the LIBSVM integration software is selected as the tool to classify and identify the original data and the data processed by "convolution-pooling".SVM parameters are combined with C-SVC model,nu-SVC model and linear kernel function,polynomial kernel function,radial basis kernel function and Sigmoid kernel function.The convolution-pooling processing can achieve data dimensionality reduction and "gaussian smooth convolution kernel convolution-pooling" processing can improve SVM face recognition rate.SVM is more suitable to choose C-SVC model linear kernel function in face recognition.

Key words: face recognition, convolution, pool, SVM

中图分类号: