楚雄师范学院学报 ›› 2024, Vol. 39 ›› Issue (3): 77-84.

• 数学 • 上一篇    下一篇

数列极限的求解方法探析

杨雄, 袁新全*   

  1. 娄底职业技术学院 公共课部,湖南 娄底 417000
  • 收稿日期:2023-10-21 出版日期:2024-05-20 发布日期:2024-06-05
  • 通讯作者: *袁新全(1967–),男,讲师,研究方向为高等数学教学及应用。E-mail: 3450616940@qq.com ,Tel. 13786893768
  • 作者简介:杨 雄(1977–),男,副教授,研究方向为高等数学教学及应用。E-mail:104012195@qq.com ,Tel. 13873819213
  • 基金资助:
    湖南省社会科学成果评审委员会项目(No. XSP22YBC054); 娄底职业技术学院教学改革研究项目(No. LZJY22BZC01)

Research on the Solution of Sequence Limits

YANG Xiong, YUAN Xinquan   

  1. Common Courses Department, Loudi Vocational and Technical College, Loudi, Hunan Province 417000
  • Received:2023-10-21 Online:2024-05-20 Published:2024-06-05

摘要: 数列极限的求解是极限学习的基础,针对应用数列极限的定义、数列极限运算技巧及Stolz定理等对数列极限的求解进行探析,发现二个数列极限求解的命题能够解决求解数列极限中的很多问题。列举了几种求解数列极限的方法,为求解数列极限的学习提供参考。

关键词: 数列极限, 求解极限, Stolz定理, 代换法

Abstract: The solution of sequence limits is the foundation of limit learning. This article explores the application of the definition of sequence limits, sequence limit operation techniques and Stolz theorem to solve sequence limits. During the process of solving sequence limits, two propositions are obtained, and the proof and application of propositions are explored. It is found that propositions can solve some problems in solving sequence limits. Finally, several methods for solving sequence limits are cited, providing reference for learning to solve sequence limits.

Key words: sequence limit, solution limit, Stolz theorem, substitution method

中图分类号: