[1] 丁重阳,刘凯,李光,等.基于时空权重姿态运动特征的人体骨架行为识别研究[J].计算机学报,2020,43(01):29-40. Ding C Y, Liu K, Li G, et al. Spatio-temporal weighted posture motion features for Human Skeleton action recognition research[J]. Chinese Journal of Computers, 2020,43(01):29-40. [2] 朱大勇,郭星,吴建国.基于kinect三维骨骼节点的动作识别方法[J].计算机工程与应用,2018,54(20):152-158. Zhu D Y, Guo X, Wu J G.Action recognition method using Kinect 3D skeleton data[J]. Computer Engineering and Applications, 2018,54(20):152-158. [3] Hao W,Zhang Z.Spatiotemporal distilled dense-connectivity network for video action recognition[J]. Pattern Recognition, 2019,92:13-24. [4] 李前,杨文柱,陈向阳,等.基于紧耦合时空双流卷积神经网络的人体动作识别模型[J].计算机应用,2020,40(11):3178-3183. LI Q, Yang W Z, Chen X Y, et al. Human action recognition model based on tightly coupled spatiotemporal two-stream convolution neural network[J]. Journal of Computer Applications, 2020,40(11):3178-3183. [5] 田冬. 基于深度学习的骨架序列-视频动作识别研究[D].浙江:浙江大学,2020. Tian D.Research on action recognition in skeleton sequences-videos based on deep learning [D]. Zhejiang: Zhejiang University, 2020. [6] Wang D,Xiao H,Ou F,et al. Moving human focus inference model for action recognition[C]. Proceedings of the 45th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE, 2019:2554-2559. [7] Neziha Jaouedi,Noureddine Boujnahb,Med Salim Bouhlelc.A new hybrid deep learning model for human action recognition[J]. Journal of King Saud University-Computer and Information Sciences, 2020,32(4):447-453. [8] Koohzadl M,Charkari N M.A context based deep temporal embedding network in action recognition[J]. Neural Processing Letters, 2020,52(1):187-220. [9] 蒋丽,黄仕建,严文娟.基于低秩行为信息和多尺度卷积神经网络的人体行为识别方法[J].计算机应用,2021,41(03):721-726. Jiang L, Huang S J, Yan W J.Human action recognition method based on low-rank action information and multi-scale convolutional neural network[J]. Journal of Computer Applications, 2021,41(03):721-726. [10] Peng Y, Zhao Y, Zhang J.Two-stream collaborative learning with spatial-temporal attention for video classification[J]. IEEE Transactions on Circuits & Systems for Video Technology,2019,29(3):773-786. [11] 刘锁兰,顾嘉晖,王洪元,等.基于关联分区和ST-GCN的人体行为识别[J/OL].计算机工程与应用:1-11[2021-03-10].http://kns.cnki.net/kcms/detail/11.2127.TP.20200907.1754.008.html. Liu S L, Gu J H, Wang H Y, et al. Human behavior recognition based on associative partition and ST-GCN [J/OL]. Computer Engineering and Applications:1-11 [2021-04-04]. http://kns.cnki.net/kcms/detail/11. 2127. TP.20200907.1754.008. html. [12] 黄晴晴,周风余,刘美珍.基于视频的人体动作识别算法综述[J].计算机应用研究,2020,37(11):3213-3219. Huang Q Q, Zhou F Y, Liu M Z.Survey of human action recognition algorithms based on video[J]. Application Research of Computers, 2020,37(11):3213-3219. [13] 王志华. 基于时空图卷积神经网络的人体动作识别研究[D].成都:电子科技大学,2020. Wang Z H.Research on human action recognition based on spatio-temporal graph convolutional neural network [D]. Chengdu: University of Electronic Science and Technology of China, 2020. [14] 唐超,王文剑,张琛,等.基于RGB-D图像特征的人体行为识别[J].模式识别与人工智能,2019,32(10):901-908. Tang C, Wang W J, Zhang C, et al. Human action recognition using RGB-D image features[J]. Pattern Recognition and Artificial Intelligence,2019,32(10):901-908. [15] 吕洁,李洪奇,赵艳红,等.基于关节空时特征融合的人体行为识别[J].计算机工程与设计,2020,41(01):246-252. Lü J, Li H Q, Zhao Y H, et al. Body behavior recognition based on joint space-time mixed features[J]. Computer Engineering and Design, 2020,41(01):246-252. |