楚雄师范学院学报 ›› 2021, Vol. 36 ›› Issue (3): 27-30.

• 物理 • 上一篇    下一篇

利用统计物理规律对线性谐振子加空间转子模型的初步讨论

陈彦辉1,2,3   

  1. 1.楚雄师范学院天体物理研究所,云南 楚雄 675000;
    2.楚雄师范学院物理与电子科学学院,云南 楚雄 675000;
    3.中国科学院天体结构与演化重点实验室,云南 昆明 650011
  • 收稿日期:2020-12-30 出版日期:2021-05-20 发布日期:2021-07-23
  • 作者简介:陈彦辉(1987–),男,天体物理专业博士,楚雄师范学院物理与电子科学学院副教授,云南省万人计划青年拔尖人才。研究方向为恒星结构与演化、白矮星星震学、天文学科学普及、理论物理、物理学科普等。E-mail: yanhuichen1987@126.com
  • 基金资助:
    国家自然科学基金青年项目(No.11803004)

A Preliminary Discussion on the Linear Harmonic Oscillator Plus Space Rotor Model by Using the Laws of Statistical Physics

CHEN Yanhui1,2,3   

  1. 1. Institute of Astrophysics, Chuxiong Normal University, Chuxiong, Yunnan Province 675000;
    2. School of Physics and Electronical Science, Chuxiong Normal University, Chuxiong, Yunnan Province 675000;
    3. Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming, Yunnan Province 650011
  • Received:2020-12-30 Online:2021-05-20 Published:2021-07-23

摘要: 基于统计物理基础知识和双原子分子理想气体热容量的计算过程,初步研究了线性谐振子加空间转子模型;计算了常温和高温时振动和转动耦合情况下的粒子配分函数,常温时粒子的配分函数为$z=\frac{1}{N!}\frac{T}{T_{r}}e^{-\beta \frac{1}{2}\hbar\omega}$。高温时粒子的配分函数为$z=\frac{1}{N!}\frac{T}{T_{r}}(e^{-\beta \frac{1}{2}\hbar\omega}+e^{-\beta \frac{3}{2}\hbar\omega}+e^{-\beta \frac{5}{2}\hbar\omega}+...)$。有了配分函数以后可以根据需要计算任意需要的宏观物理量,如能量、压强、熵等。

关键词: 线性谐振子, 空间转子, 振动与转动耦合, 配分函数

Abstract: Based on the basic knowledge of statistical physics and the calculation process of diatomic ideal gas heat capacity, the linear harmonic oscillator and space rotor model are studied. The partition function of particles at room/cool temperature and high temperature is calculated. At room temperature, the particle partition function is $z=\frac{1}{N!}\frac{T}{T_{r}}e^{-\beta \frac{1}{2}\hbar\omega}$. At high temperature, the particle partition function is $z=\frac{1}{N!}\frac{T}{T_{r}}(e^{-\beta \frac{1}{2}\hbar\omega}+e^{-\beta \frac{3}{2}\hbar\omega}+e^{-\beta \frac{5}{2}\hbar\omega}+...)$. With the partition function, we can calculate any required physical quantity, such as energy, pressure and entropy.

Key words: linear harmonic oscillator, space rotor, coupling between rotation and vibration, partition function

中图分类号: