[1] CHENG J, ZHAO P, LI J Y, et al. Advances in pest control of deciduous fruit trees over the past 60 years in China[J]. Journal of Plant Protectio, 2022, 49(1): 87-96. [2] 王佰涛,杨文玲,雷高,等. 基于高通量测序的魔芋根际土壤真菌多样性分析[J]. 西南农业学报, 2022, 35(4):804-811. WANG B T,YANG W L,LEI G, et al. Analysis of fungal diversity in rhizosphere soil of konjac based on high-throughput sequencing[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(4):804-811. [3] 阿依妮萨·阿卜力海提,代先兴,李猛,等. 阿拉尔垦区棉花根系组织及根际土壤细菌多样性分析[J]. 棉花科学, 2020, 42(3): 20-26. AYINISA A, DAI X X, LI M, et al. Bacterial diversity of cotton root tissue and Rhizosphere soil in Alar Reclamation Area[J]. Journal of Cotton Science, 2020, 42(3): 20-26. [4] 王志永,吴晓阳,张永宾. 基于高通量测序技术的美洲獾肠道微生物多样性分析[J]. 野生动物学报, 2018, 39(4): 938-942. WANG Z Y, WU X Y, ZHANG Y B.Comparison of the fecal microbiota of American badgers by High-Throughput Illumina Sequencing of the 16S rRNA Gene[J]. Chinese Journal of Wildlife, 2018, 39(4): 938-942. [5] 高嵩,孙文松,温健,等. 连作龙胆草根际土壤细菌多样性及功能预测分析[J]. 沈阳农业大学学报, 2021, 52(1): 102-108. GAO S, SUN W S, WEN J, et al. Diversity of Rhizosphere bacterial and function predicted analysis in Gentiana scabra Replanting soil[J]. Journal of Shenyang Agricultural University, 2021, 52(1): 102-108. [6] 李小义,申晓东,张效平,等. 从江田鱼肠道微生物多样性分析[J]. 湖北农业科学, 2022, 61(5): 56-59+75. LI X Y, SHEN X D, ZHANG X P, ,et al. Analysis of the bacterial diversity in the Congjiang field carp's intestine [J]. Hubei Agricultural Sciences. Analysis of the bacterial diversity in the Congjiang field carp's intestine [J]. Hubei Agricultural Sciences, 2022, 61(5): 56-59+75. [7] 邵微,于会丽,张培基,等. 不同落叶果树根际微生物群落代谢与组成的差异性研究[J]. 果树学报, 2020, 37(9):1371-1383. SHAO W, YU H L, ZHANG P J, et al. Differences in metabolism and composition of microbial communities in rhizosphere soils with different deciduous fruit trees[J]. Journal of Fruit Science, 2020, 37(9):1371-1383. [8] Magoč T,Salzberg S L.FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. [9] Bokulich N A, Subramanian S,Faith J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 2013,10(1): 57-59. [10] Rognes T, Flouri T,Nichols B, ,et al. VSEARCH: a versatile open source tool for metagenomics [J]. Peer Journal. VSEARCH: a versatile open source tool for metagenomics [J]. Peer Journal, 2016, 4: e2584 https://doi.org/10.7717/peerj. 2584. [11] Haas B J, Gevers D,Earl A, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research, 2011,21(3): 494-504. [12] Edgar R C.UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013,10(10): 996-998. [13] Wang Q, Garrity G M,Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology,200,73(16): 5261-5267. [14] Quast C, Pruesse E,Yilmaz P, et al. The SILVA ribosomal RNA gene database project: 791 improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1): D590-D596. |