[1] 彭乃驰,党婷.基于ARMA-GM-BP组合预测模型及应用[J].统计与决策,2016,32(2):80–82. Peng N C,Dang T.Based on arma-gm-bp combined forecasting model and application[J].Statistics &Decision,2016,32(2):80–82. [2] 雍红月,包桂兰.组合时间序列ARMA模型在经济预测中的应用——内蒙古十一五期间GDP预测[J].数学的实践与认识,2008,38(21):19–23. Yong H Y,Bao G L.An application of combination ARMA model in trend forecasting of GDP form 2006 to 2010 in inner mongolia[J].Mathematics in Practice and Theory,2008,38(21):19–23. [3] 田梓辰,刘淼.基于改进灰色GM(1,1)模型的GDP预测实证[J].统计与决策,2018,34(11):83–85. Tian Z C,Liu M.Empirical analysis of GDP prediction based on improved GM (1,1) model[J].Statistics &Decision,2018,34(11):83–85. [4] 李辉,田梓辰,李苏北,等.基于时间序列分析方法的伊犁州GDP的预测研究[J].数学的实践与认识,2017,47(13):15–23. Li H,Tian Z C,Li S B,et al.The evaluation of the GDP in YiLi prefecture countries based on time series analysis[J].Mathematics in Practice and Theory,2017,47(13):15–23. [5] 王莎莎,陈安,苏静,等.组合预测模型在中国GDP预测中的应用[J].山东大学学报(理学版),2009,44(2):56–59. Wang S S,Chen A,Su J,et al.Application of the combination prediction model in forecasting the GDP of China[J].Journal of Shandong University (Natural Science),2009,44(2):56–59. [6] 申兆光.趋势-季节回归与ARMA混合模型在季度GDP预测中的应用[J].统计与决策,2015,31(7):23-26. Shen Z G.Application of trend season regression and ARMA hybrid model in quarterly GDP prediction[J].Statistics &Decision,2015,31(7):23–26. [7] 慕容楠,叶禹杉,杨晴怡.中国人均GDP时间序列模型的建立与预测[J].内蒙古统计.2012,30(5):21–27. Mu R N,Ye Y S,Yang Q Y.Establishment and prediction of time series model of China's per capita GDP[J].Inner Mongolia Statistics.2012,30(5):21–27. [8] 严天艳,吕王勇,朱丽萍.中国人均GDP的时间序列模型的建立与分析[J].西南民族大学学报·自然科学版.2008,34(6):1162–1167. Yan T Y,Lu W Y,Zhu L P.Time series model's constitution and analysis of per Chinese GDP[J].Journal of Southwest University for Nationalities·Natural Science Edition.2008,34(6):1162–1167. [9] 龚国勇.ARIMA模型在深圳GDP预测中的应用[J].数学的实践与认识.2008,38(4):53–57. Gong G Y.The application of ARIMA model in forecasting GDP of Shenzhen[J].Mathematics in Practice and Theory.2008,38(4):53–57. [10] Elmira E,Cagay C.Economic growth prediction using optimized support vector machines[J].Computational Economics,2016,48(3):453–462. [11] Jos J W,Jin X W,Jasper M.Forecasting and nowcasting real GDP:Comparing statistical models and subjective forecasts[J].International Journal of Forecasting,2016,32(2):411–436. [12] Ruey Y,James H C.Nowcasting GDP growth for small open economies with a mixed-frequency structural model[J].Computational Economics,2019,54(1):177–198. [13] Oscar C,Enric M,Salvador T.Evolutionary computation for macroeconomic forecasting[J].Computational Economics,2019,53(11):833–849. [14] 罗森,张孟璇.基于ARIMA和VAR模型的我国季度GDP预测比较[J].现代商业.2019,14(35):50–52. Luo S,Zhang M X.Comparison of China's quarterly GDP forecast based on ARIMA and VAR model[J].Modern Business.2019,14(35):50–52. [15] Ratnadip A,Agrawal R K.A linear hybrid methodology for improving accuracy of time series forecasting[J].Neural Computing and Applications,2014,25(2):269–281. |