楚雄师范学院学报 ›› 2025, Vol. 40 ›› Issue (3): 100-103.

• 数学 • 上一篇    下一篇

浅谈乘方的余数问题

刘鹏, 王雪梅   

  1. 楚雄师范学院 教育学院,云南 楚雄 675000
  • 收稿日期:2025-01-20 出版日期:2025-05-20 发布日期:2025-07-01
  • 作者简介:刘 鹏(1973–),男,副教授,研究方向为数据分析与挖掘。

On the Remainder of Power

LIU Peng, WANG Xuemei   

  1. School of Education, Chuxiong Normal University, Chuxiong, Yunnan Province 675000
  • Received:2025-01-20 Online:2025-05-20 Published:2025-07-01

摘要: 文章针对乘方余数问题,提出了具体的解决思路。当底数与模数互质时,可直接运用欧拉定理进行求解;若底数与模数不互质,则需先进行适当的变换,再利用欧拉定理求得结果。文章通过实例,详细演示了该方法的应用过程。此外,文章还针对招考中常见的乘方尾数问题进行了简化分析,指出当模数为10时,底数只需保留个位数,指数取除以4的余数即可快速求解。文章为乘方余数问题提供了一种系统、有效的求解方法,具有一定的理论价值和实际意义。

关键词: 整除性, 乘方, 余数

Abstract: This article presents a solution to exponentiation remainder problems. When the base and modulus are coprime, Euler's theorem can be directly applied. If not, a transformation is needed before applying it. The article demonstrates this method through multiple examples. For common exponentiation last-digit problems in exams, just retain the last digit of the base and take the exponent modulo 4 for quick solutions when the modulus is 10. Overall, this article offers an effective and systematic approach to solving exponentiation remainder problems, with both theoretical and practical value.

Key words: divisibility, power, remainder

中图分类号: